PERGAMON

International Journal of Heat and Mass Transfer 44 (2001) 4267-4275

International Journal of

l'IEAT and MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Mixed convection with viscous dissipation in an inclined
channel with prescribed wall temperatures

A. Barletta *, E. Zanchini

Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale (DIENCA ), Universita di Bologna, Viale Risorgimento 2,
1-40136 Bologna, Italy

Received 19 October 2000; received in revised form 31 January 2001

Abstract

The fully developed laminar mixed convection with viscous dissipation in an inclined channel with prescribed wall
temperatures is studied analytically. The mean fluid temperature is assumed as the reference temperature. Two per-
turbation expansions are considered. In the first, the forced convection with viscous dissipation is assumed as a starting
condition and the effects of buoyancy for fixed values of the Brinkman number are studied. In the second, starting from
the solution for mixed convection without viscous dissipation, the effects of the Brinkman number for fixed values of the
Grashof number are analysed. The different solution methods allow a cross-check of the results. The dimensionless
velocity field, the dimensionless temperature field, the dimensionless pressure field, the friction factors and the Nusselt
numbers are determined and discussed. The results show that viscous dissipation enhances the effects of buoyancy and

vice versa. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recently, a wide literature on laminar mixed con-
vection in either vertical or horizontal channels and tubes
has been developed. The main technical applications of
these researches concern cooling systems for electronic
devices and solar energy thermal conversion. Many re-
sults available in the literature are collected in [1]. In
particular, the fully developed mixed convection in ver-
tical channels has been studied analytically by Aung and
Worku [2], Cheng et al. [3], Hamadah and Wirtz [4],
Barletta and Zanchini [5]. In [5], the solutions obtained in
[2-4] have been extended to broader boundary condi-
tions; moreover, a method for the choice of the reference
fluid temperature which is employed in the linearisation
of the equation of state p = p(7) has been determined.
The linear stability of fully developed laminar mixed
convection in vertical channels has been studied by Chen
and Chung, for the boundary conditions of linearly
varying wall temperatures [6] and uniform but different
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wall temperatures [7]. In all the studies quoted above, the
viscous dissipation within the fluid has been neglected.
The effect of viscous dissipation on fully developed mixed
convection in vertical channels or vertical circular tubes,
for several boundary conditions, has been studied by
Barletta [8-11] and by Zanchini [12].

A few studies concern mixed convection in inclined
channels. An analytical solution for laminar mixed
convection in a channel with a uniform wall heat flux,
heated fluid and downward flow is presented by Lavine
[13]. The solution does not depend monotonically on the
tilt angle. A study of the same author on the stability of
the flow, for the problem quoted above, concludes that
the flow is unstable for every value of the Rayleigh
number [14]. An experimental work on laminar mixed
convection in an inclined tube, with heated fluid,
downward flow and uniform wall temperature, shows a
stable flow even when flow-reversal occurs [15]. A nu-
merical study of the inlet region for laminar mixed
convection in an inclined tube with a uniform wall
temperature is presented in [16]. In all the calculations
on inclined channels quoted above the viscous dissipa-
tion in the fluid has been neglected.

In this paper, the fully developed and laminar mixed
convection with viscous dissipation in an inclined
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Nomenclature

Br Brinkman number defined in Eq. (13)

Brmax  radius of convergence of the series defined by
Egs. (38)-(41)

C derivative of P with respect to X (Pa m™!)

N friction factor at y = —1

b friction factor at y = 1

F part of P which is a function of Y (Pa)

g modulus of the acceleration due to gravity
(ms™)

Gr Grashof number defined in Eq. (13)

Grr  Grashof number defined in Eq. (30)

k thermal conductivity (W m~! K1)

L half of the channel width (m)

Nu;  Nusselt number at y = —1 defined in Eq. (21)

Nu,  Nusselt number at y = 1 defined in Eq. (21)

)4 pressure (Pa)

P difference between the pressure and the
hydrostatic pressure (Pa)

Re Reynolds number defined in Eq. (13)

T temperature (K)

To reference fluid temperature defined by Eq. (4)
(K)

T temperature at y = —1(K)

T, temperature at y = 1 (K)

u = U/U,, dimensionless velocity component in
the X-direction
u, nth coefficient of the perturbation series

considered in Section 3

nth coefficient of the perturbation series
defined by Eq. (38)

U velocity component in the X-direction (m s')
Uy mean value of U defined in Eq. (14) (m s7)
X streamwise coordinate (m)

y = Y /L, dimensionless transverse coordinate
Y transverse coordinate

Greek symbols

p thermal expansion coefficient (K~')

AT  reference temperature difference defined in
Eq. (14)

e dimensionless parameter defined in
Eq. (13)

emax  radius of convergence of the series considered
in Section 3

er dimensionless parameter defined in
Eq. (30)

n dimensionless parameter defined in
Eq. (13)

1, nth coefficient of the perturbation series
considered in Section 3

nr dimensionless parameter defined in Eq. (30)

nr, nth coefficient of the perturbation series
defined by Eq. (41)

0 dimensionless temperature defined in Eq. (13)

0, nth coefficient of the perturbation series
considered in Section 3

0r dimensionless temperature defined in Eq. (30)

Or, nth coefficient of the perturbation series
defined by Eq. (39)

A dimensionless pressure drop coefficient
defined in Eq. (13)

I nth coefficient of the perturbation series
considered in Section 3

A, nth coefficient of the perturbation series

defined by Eq. (40)

u dynamic viscosity (Pa s)

P mass density (kg m™)

Do mass density at T = T, (kg m™3)

1% tilt angle (rad)

Q dimensionless function of y defined by Egs.
(22) and (23)

Qr dimensionless function of y defined by Egs.
(36) and (37)

channel with isothermal walls is studied. According to
the prescriptions developed in [5], the mean fluid tem-
perature in each cross-section, which turns out to be
invariant along the flow, is chosen as the reference fluid
temperature. In each point, for given values of Grashof,
Reynolds and Brinkman numbers, any dimensionless
quantity turns out to be a monotonic function of the tilt
angle.

2. Mathematical model

Let us consider a Newtonian fluid, which undergoes a
steady and laminar flow in a parallel-plane channel with
a tilt angle ¢ with respect to a vertical direction. A

sketch of the system under exam and of the coordinate
axes is reported in Fig. 1. The channel walls are iso-
thermal, with prescribed temperatures 7; and 75. Let us
assume that the velocity field is parallel and such that
only the component U along the X direction is non-zero.
According to the Boussinesq approximation, the
velocity field will be considered as solenoidal. Therefore
0U/0X = 0, the velocity field depends only on ¥ and no
acceleration is present. The momentum balance equa-
tions along X and along Y can be written as

oP d&’U
—67+Pogﬁ(T_7b)C05(P+HW—O7 (1)
oP .
~ay T Pogh(T —To)sing =0, (2)
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Fig. 1. Sketch of the channel and of the coordinate system.

where P is the difference between the pressure and the
hydrostatic pressure

P=p+ pyg(Xcosp+ Ysing) (3)

and 7, is the reference temperature, defined as

1 [t
Ty = — 7dY. 4
"=/, d (4)

The condition 0U /0X = 0, which is a consequence of the
Boussinesq approximation, and the local mass balance
equation yield

o X, Y)U(Y)|=0 5

X, UV = (5)
and thus 0p/0X = 0. Since the Boussinesq approxima-
tion implies also that the mass density depends only on
temperature, one concludes that 87 /0X = 0. On account
of Eq. (4), also the reference fluid temperature 7j is in-
dependent of X and thus is a constant. The results ob-
tained above imply that the energy balance equation can
be written as

d&r  /duy?

By taking the derivative of Egs. (1) and (2) with respect
to X, one obtains

P 0 P
Xz oxoy

()

The most general form of the function P(X,Y) which
fulfils Eq. (7) is as follows:

P(X,Y) = F(Y) + CX, (8)

where F(Y) is any function of Y and C is an arbitrary
constant. By substituting Eq. (8) in Egs. (1) and (2), one
obtains

2

U
wgyz T PogB(T —To)cosg - C =0, )
dF .
qy ~ PosB(T = Ty)sine = 0. (10)
The boundary conditions are:
U(-L) = U(L) =0, (11)
T(-L)=T,, T(L)=". (12)

3. Effect of buoyancy forces: analysis

In this section, starting from the solution for forced
convection with viscous dissipation, the effect of buoy-
ancy forces is analysed by means of a perturbation ex-
pansion. Let us define the dimensionless quantities

. L? T—T U
A= __C7 = ) U=-—,
ﬂU() AT UO
Y 4LU
Y=, Re = 0p07
L64 2 L%ATH AT (13)
Grzipogli , Br=——-,
u L-T
LT 87Grcos<p
T AT 777 Re

where the mean velocity U, and the reference tempera-
ture difference AT are given by

1 L

Y%,
- Y)dy, AT =270 14
=5 [ vnar, ¢ (14)

By introducing the dimensionless quantities in Eqs. (6)
and (9), one obtains

d’u g

—dyzz—ﬁe—;,, (15)
d? du\?

o \a) (1e)

Egs. (4) and (14) yield two constraints on u(y) and 0(y),
namely

[uumy=z (17)

1

/_le(y)dyzo. (18)

Moreover, Egs. (11)-(13) yield the dimensionless
boundary conditions
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u(—1) = u(1) =0, (19)

1

0=1)=n, 0(1)=p +n. (20)
For fixed values of Br and ¢, Egs. (15) and (16), with the
boundary conditions Egs. (19) and (20) and the con-
straints Egs. (17) and (18), determine 4 and # and yield u
and 0 as functions of y. Thus, if Br and ¢ are fixed, then
u(y), 0(y), 2 and 5 are uniquely determined. The defi-
nitions of the friction factors f; and f> at the channel
walls, as well as the relation between f, f> and /, can be
found in [10].

One can also define a Nusselt number at each channel
wall, as follows:

4Ldr/dy|,__,  4do
Nup = —— A==t 2
T(-L)-Tp ndyl,__, 1)
4Ld7/dY|,_,  4Br do
NMZ
T(L)—T, 1+Bmdy

y=

The Nusselt numbers defined by Eq. (21) are based on
the choice of Tj as the reference temperature to express
the heat transfer between each wall and the fluid. This
choice has been adopted in other studies of mixed con-
vection in ducts [10,11,17].

The dependence of P on Y can be described by means
of the function

- [ 00/)dy. (22)

In fact, by employing Egs. (4), (8), (10) and (13), one
obtains

Q) = 16L

o tang [P(X,Y) —P(X,—L)]. (23)

Indeed, the difference [P(X,Y) — P(X,—L)] is indepen-
dent of X, as shown by Eq. (8). Moreover, Egs. (18) and
(22) show that Q(1)=0 and therefore [P(X,L)=
P(X,—L)], on account of Eq. (23). For ¢ — 0, i.e. in the
limit of forced convection, Egs. (22) and (23) allow one
to conclude that P is independent of Y.

The solution of Egs. (15) and (16) with the boundary
conditions Egs. (19) and (20) and the constraints Egs.
(17) and (18) is obtained, as in [10], by means of a per-
turbation method in which u(y), 0(y), A and n are ex-
pressed as power series with respect to the parameter e.

For the lowest perturbation order n =0 (forced
convection with viscous dissipation), one obtains

3 \
W) =301 -, da=3,
3 1 3
0o(v) = *4)’ +E)’+ 20" (24)

_ (3, L
Mo="\35" 28 )

Eq. (24) yields

20(1 + 6Br)
_flRe =24 —sze, Nu u = W,
20(1 — 6Br)
Ny =—~— 7 25
TS e )
_ 3 5 2
QW) 50”7 —m(l—y)‘i‘%%

Clearly, Eq. (25) holds for ¢ — 0, i.e. in the limit of
forced convection. As it has been pointed out before, the
function Q(y) given by Eq. (25) is not related to the
difference [P(X,Y) — P(X,—L)], which is zero in forced
convection regime.

For n > 0 one obtains:

_ y+1 oy
w) = [[o=p0ar 25 [y

I
x 0,_1()dy + 2(

0.0) y+1/ ( du,(/y)dund,/(y)>

/ <Zdu](y ) du,_ji( ))d,
=0

1 —y%), (26)

ho=—2 [ (=)0, 0, (28)

n, = ,1 (Z dul du”—J )) d ! (29)

Jj=0

The symbolic evaluation of u,(y), 0,(y), 4, and 5, has
been performed by means of a proper iterative algorithm
based on Egs. (26)-(29). By employing a personal
computer, the evaluation has been performed up to the
35th perturbation order, for several values of the
Brinkman number. The perturbation series have a finite
radius of convergence, which depends on Br. In other
words, for every value of Br there exists a positive real
number &y, such that the perturbation series converge if
and only if | & | < emax. Clearly, the convergence becomes
slower when | ¢ | approaches &n.x. Nevertheless, pertur-
bation series truncated to the 35th term ensure an ex-
cellent precision of the numerical results even for values
of | ¢ | rather close to &y.. The radius of convergence
emax has been estimated by means of the method de-
scribed in [11]. The following results have been obtained:
tmax = 7.4 for Br=0.001, en.x ~24 for Br=0.01,
emax = 77 for Br = 0.1; emax =~ 200 for Br = 1, gmax ~ 240
for Br > 10.
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4. Effect of buoyancy forces: results

By employing the method described in Section 3, the
friction factors, the dimensionless pressure drop, the
Nusselt numbers, the dimensionless-velocity profile and
the dimensionless-temperature profile have been evalu-
ated, for some fixed values of Br, as functions of ¢. The
Grashof number Gr defined in Section 3 is always pos-
itive. Therefore, negative values of ¢ correspond to
downward flow, while positive values correspond to
upward flow. Moreover, as is shown by Eq. (13), for a
fixed value of Br an increase of ¢ implies an increase of
buoyancy effects. Finally, it is sufficient to report results
for positive values of the Brinkman number, i.e. for
T, > T;. In fact, an analysis of Egs. (13)—(21) shows that
the change Br — —Br, ¢ — ¢ implies: u(y) — u(—y),
0(y) — 0(=y), Q) — —Q(=y), ~— 2, fiRe — fiRe,
Nu; — Nu,. Evaluations have been performed for sev-
eral positive values of the Brinkman number. Some re-
sults for Br = 0.1 are reported in Fig. 2, where plots of
the friction factors fiRe and f>Re, of the mean value
(fiRe + f2Re)/2 = 82, of the Nusselt numbers Nu; and
Nu, are presented, in the range —70 < &< 70. The figure
shows that the dependence on ¢ of the friction factors
and of 4 is rather sharp. In particular, fiRe is a de-

JiRe

40 [ SA

-60 -40 -20 0 20 40 60

10,\L/

-60 -40 20 0 20 40 60

Fig. 2. Plots of fiRe, f>Re, 82, Nu; and Nu, versus e, for
Br =0.1, in the range —70 < ¢< 70.

creasing function of ¢ and becomes negative for ¢ > 25.6;
on the contrary, f,Re is an increasing function of ¢ and is
negative for ¢< — 34.1. The negative values of the
friction factors are due to flow-reversal phenomena. The
dimensionless pressure drop A is a decreasing function of
¢, for every non-vanishing value of Br. For Br = 0.1, as
is shown in Fig. 2, / decreases from 4.803 to 0.075 in the
range —70<&e<70. In Fig. 2, plots of Nu; and Nu,
versus ¢ for Br = 0.1, in the interval —70 <¢< 70, are
reported too. The dependence of Nu, on ¢ is very strong.
Indeed, Nu, is negative for ¢ = 16.60. As it will be shown
in the following section, in the absence of viscous dis-
sipation A, Nu; and Nu, are not affected by buoyancy
forces. Values of 4, fiRe, foRe, Nu; and Nu, versus ¢, for
Br =0.01 and for Br = 0.1, are reported in Table 1 with
an accuracy of four digits.

5. Effect of viscous dissipation: analysis

In this section, starting from the solution for mixed
convection without viscous dissipation, the effect of
viscous dissipation is analysed by means of a power-
series expansion in which the perturbation parameter is
the Brinkman number. Let us define the following di-
mensionless quantities, in addition to those defined in
Eq. (13):

BT = ) T=" 5
_h—-T . __Grreoso
Nr = T2 _ TI ) oT — Re .

Clearly 0y = Br0, Gry = Gr/Br,n; = Bryand ¢r = ¢/Br.
From Egs. (6), (9), (13) and (30) one obtains

d’u er
d_yz: _EHT_;” (31)
a0, du\?

= —Br| — | . 2
dy? r<dy) (2)

The constraint on u is still given by Eq. (17) and that on
67" is

/j@r(y) dy = 0. (33)

The dimensionless boundary condition for u is still given
by Eq. (19) and that on 07 is

Or(=1) =np, 0r(1) =np+ 1. (34)

The Nusselt numbers are still defined by Eq. (21) and are
expressed as
4 dHT 4 dgT

Nup=—— =L Nup=— —T| .
L4+n dy |,

35
nr dy | 2
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Table 1
Values of A, fiRe, f>Re, Nu; and Nu, versus &: in the range —18 <& < 18 for Br = 0.01; in the range —60 < ¢ < 60 for Br = 0.1
Br=1/100 Br=1/10
e A fiRe foRe Nu, Nuy & A fiRe faRe Nu,y Nuy
-18 6.358 194.0 -92.26 8.719 0.8859 -60 4.297 79.75 —11.00 11.67 1.599
-15 5.051 161.6 -80.77 7.625 1.920 -50 3.872 69.68 -7.729 10.49 2.143
-12 4.106 130.9 —65.18 6.619 2.747 -40 3.541 59.89 -3.239 9.340 2.529
-9 3.497 102.0 —46.08 5.741 3.354 -30 3.304 50.49 2.377 8.258 2.722
-6 3.167 7496 -24.28 5.025 3.735 -20 3.151 41.47 8.944 7.271 2.692
-3 3.033 49.18 -0.6446  4.501 3.888 -10 3.059 32.70 16.24 6.411 2.405
0 3.000 24.00 24.00 4.190 3.806 0 3.000 24.00 24.00 5.714 1.818
3 2.966 -1.359  48.82 4.110 3.478 10 2.939 15.08 31.94 5.220 0.8698
6 2.824 -27.74 72.93 4.272 2.884 20 2.832 5.608 39.71 4972 -0.5393
9 2.463 -55.94 95.35 4.677 1.993 30 2.631 -4.752 46.85 5.010 -2.570
12 1.773 —86.58 1149 5.313 0.7637 40 2.283 -16.28 52.81 5.357 —5.498
15 0.6681 —119.9 130.6 6.150 —-0.8572 50 1.744 —-29.05 56.96 5.999 -9.830
18 -0.8944  -155.5 141.2 7.140 -2.935 60 0.9979 -42.83 58.79 6.880 -16.65
i 3
The depepdence of P on Y can be described by means of uz, (v) = O’ P 4+2(1=12),
the function 192 2 42)
v 1 1
_ / GT()/) dy' (36) i, =3, HTU ) = 5)’7 Ny = T
J-1
. Eq. (42) yields
and of the relation a-(42)y
er
16L fiRe =24 — —| fze—24+
Q) =—7——[PWX,Y) - P(X,-L)]. (37) 12° 12 43
erpulUy tan @ y2 _1 (43)
Nu1 = Nuz = 47 QT(y) = 4 .

A solution of Egs. (31) and (32), together with the
boundary conditions Egs. (19) and (34) and the con-
straints Eqgs. (17) and (33), can be obtained by means
of a perturbation method in which u(y), 67(y), A and
nr are expressed as power series with respect to Br,
namely

u(y) = ug, (v) + ur, () Br + ug, (y)Br* + - --

= i ur, (v)Br", (38)

0r(y) = 05, (») + 07, (v)Br + 07,(y)Br* + - --

I
e

O, (v)Br", (39)

3
Il
o

A= dg + A, Br+ A, Br + - =

> irBr, (40)
n=0

WT:"TD+’7T,B’”+'7TZB’”2+"‘ :Z’7T"B”n~ (41)
n=0
As in Section 3, one evaluates by an iterative procedure
[10] the functions ur, (v), 0r,(y) and the parameters Az,
and nyg,.
For n =0 (mixed convection without viscous dissi-
pation), one obtains:

Clearly, Eq. (43) holds for Br — 0, i.e. in the limit of
mixed convection without viscous dissipation.
For n > 0 one obtains:

1 dug, (/) dug,_,_, () ,
ﬂE,Z_Z/ (Z ul %)dy,

j=0

(44)

+1
Or,(v) = 17, +25— (1 )

(Z dug, (v/) duy, ,yp/)) &

=0

dur ) dur,_ (V) .,
_ Z — 3 dy,
Jj=0 y

(45)
3 ! 2 /
i == ggor [ (1=, (46)
& 7 ! ! ! &
ur0) = =76 [ =000 +350+ 1)
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The symbolic evaluation of y;,, 0r,(y), A7, and uz, (y) has
been performed, by means of a personal computer, up to
the 28th perturbation order, for several values of ¢. The
perturbation series defined by Eqgs. (38)—(41) have a fi-
nite radius of convergence Bry.x, Which depends on &r
and has been estimated by means of the method de-
scribed in [11]. The following results have been obtained:
Brioax = 4.8 for ¢y = £50, Brp. ~ 2.4 for ¢ = £100,
Broa =023 for e = +500, Brp., ~ 0.062 for
er = +1000.

6. Effect of viscous dissipation: results

By employing the method described in Section 5, the
friction factors, the dimensionless pressure drop, the
Nusselt numbers, the dimensionless velocity profile and
the dimensionless temperature profile have been evalu-
ated, for some fixed values of ¢r, as functions of Br. Only
positive values of ¢; have been considered. The results
for negative values of &7 can be obtained as follows. If
one performs the change & — —e&r and Br — —Br, the
parameter ¢ defined in Section 3 remains unchanged.
Therefore, as we have shown in Section 4, u(y) — u(—y),
0) — 0(=y), Q) — —Q(=y), 21— 1, fiRe— fiRe,
Nu; — Nu,. Note that, if ¢y is positive, then Br >0
corresponds to upward flow while Br < 0 corresponds to
downward flow.

Some results for &7 = 100 are presented in Figs. 3 and
4. Plots of u and of 6 versus y are reported in Fig. 3 for
Br=0, Br=2 and Br=—2. As pointed out by this
figure, the effect of viscous dissipation on the velocity
profile, in the range —2 < Br < 2, is rather sharp and is
more significant for upward flow; a flow reversal due to
the combined action of buoyancy and viscous dissipa-
tion occurs in a very thin layer close to the cold wall, for
Br = 2. The effect of viscous dissipation on the dimen-
sionless temperature profile, in the range —2 < Br <2, is
very sharp, especially for upward flow. Finally, Fig. 4
shows that viscous dissipation has a considerable influ-
ence on the distribution of the dimensionless pressure
Qr(y).

Results for e = 1000, in the range —0.05 < Br < 0.05,
are presented in Figs. 5 and 6. Plots of fiRe, f>Re, 84,
Nuy and Nu, versus Br are reported in Fig. 5. They show
that the dependence of the friction factors on Br is sharp
and that / becomes negative for Br > 0.041. The de-
pendence of Nu; and Nu, on Br is very sharp too, and
Nu, is negative for Br > 0.016. Fig. 6 shows that viscous
dissipation enhances the flow reversal close to the wall at
y = —1 for Br > 0 (upward flow, T} < 7>) and inhibits it
for Br < 0 (downward flow, 7} > 7). The same figure
illustrates also the effect of the Brinkman number on the
dimensionless temperature profile and explains why Nu,
is negative for Br = 0.05: at y = 1, the heat flux goes out
of the channel and T(L) > T.

1.75¢

070

210

Fig. 3. Plots of u and 0 versus y, for ¢ = 100 and Br =0,
Br= -2, Br =2.

0.2
0.1
Qro
0.1

-0.2
-0.3
-0.4
-0.5

0.5 1

Fig. 4. Plots of Q versus y, for ¢z = 100 and Br = 0, Br = -2,
Br = 2.

Values of /, fiRe, foRe, Nu; and Nu, versus Br, for
er = 100 and for ¢ = 1000, are reported in Table 2 with
an accuracy of four digits. These values have been
checked by employing the perturbation method de-
scribed in Section 3: the same results have been found.

The results described in this section, as well as those
presented in Section 4, point out that buoyancy forces
enhance the effect of viscous dissipation and vice versa.
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—_—
100} /> Re
50 | —_
8 A
0
-50 ¢ \
w
-0.04 -0.02 0 0.02 0.04
10t
Nu,
51
Nul
0
5L
“0[
151
-0.04 -0.02 0 0.02 0.04
Br

Fig. 5. Plots of fiRe, fyRe, 82, Nu; and Nu, versus Br, for
er = 1000, in the range —0.05 < Br < 0.05.

3[
2 [
Br=0
110 \
Br=0.05
uo
-1
-1 -0.5 0 0.5 1
0.6
0.4 Br=0
Br=0.05
0.2
Or 0
-0.2
04 Br=-0.05
-0.6
-0.8
-1 -0.5 0 0.5 1
y

Fig. 6. Plots of u and 0; versus y, for &z = 1000 and Br =0,
Br = —0.05, Br = 0.05.

Table 2
Values of A, fiRe, faRe, Nu; and Nu, versus Br: in the range —1.4 <Br< 1.4 for ¢r = 100; in the range —0.035 < Br<0.035 for
er = 1000
er = 100 er = 1000
Br A fiRe frRe Nu,y Nu, Br A fiRe frRe Nu, Nu,
-1.4 3.665 22.32 36.32 41.64 18.89 -0.035 4.986 -37.91 117.7 1.413 9.947
-1.2 3.586 21.52 35.86 53.40 17.84 -0.03 4.762 —40.64 116.8 1.728 9.262
-1.0 3.503 20.67 35.38 98.30 16.64 -0.025 4.519 —43.51 115.8 2.063 8.532
-0.8 3415 19.78 34.87 -199.0 15.21 -0.02 4.255 -46.50 114.6 2.416 7.752
-0.6 3.322 18.84 34.31 -26.90 13.48 -0.015 3.970 —49.60 113.1 2.787 6.916
-04 3.222 17.85 33.71 -7.139 11.29 -0.01 3.666 -52.79 111.4 3.177 6.017
-0.2 3.115 16.79 33.06 0.2599 8.344 -0.005 3.342 -56.04 109.5 3.582 5.048
0 3.000 15.67 32.33 4.000 4.000 0 3.000 -59.33 107.3 4.000 4.000
0.2 2.875 14.47 31.53 6.173 -3.418 0.005 2.643 —62.62 104.9 4.429 2.863
0.4 2.738 13.19 30.62 7.540 -20.30 0.01 2.274 —65.86 102.3 4.864 1.623
0.6 2.588 11.82 29.59 8.443 -113.3 0.015 1.897 —69.03 99.38 5.302 0.2664
0.8 2.421 10.34 28.40 9.063 113.4 0.02 1.516 -72.07 96.32 5.740 -1.229
1.0 2.235 8.743  27.02 9.506 51.32 0.025 1.134 —74.96 93.11 6.172 -2.889
1.2 2.024 6.998 25.38 9.837 36.61 0.03 0.7564 -77.68 89.78 6.597 -4.751
1.4 1.780 5.064 2342 10.10 29.45 0.035 0.3852 -80.20 86.36 7.011 —6.865

7. Conclusions

Two different perturbation expansions have been
employed to study the fully developed laminar mixed
convection in an inclined channel with prescribed wall

temperatures. The different methods have allowed a
cross check of the results. Moreover, they have allowed
an analysis of the effects of buoyancy forces for given
values of the Brinkman number, as well as of the effects
of viscous dissipation for given values of the Grashof
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number. Evaluations have been performed by a sym-
bolic algorithm which employs rational numbers, thus
avoiding rounding off errors. The results obtained are
very accurate, in the domain of validity of the assump-
tions which characterise the mathematical model. The
results point out that viscous dissipation enhances the
effects of buoyancy and vice versa. In particular, only in
the presence of viscous dissipation the dimensionless
pressure drop coefficient 4 and the Nusselt numbers have
been shown to depend sharply on the Grashof number.
In the presence of buoyancy forces, viscous dissipation
affects and may produce flow-reversal phenomena. Fi-
nally, the combined effects of buoyancy and dissipation
may yield negative values of the dimensionless pressure
drop coefficient A.
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